Sezaki & Nishiyama Laboratory
Institute of Industrial Science / Center for Spatial Information Science in The University of Tokyo
Institute of Industrial Science / Center for Spatial Information Science in The University of Tokyo
石岡陸, 坪内孝太, 西山勇毅, 瀬崎薫
スマートフォンのGNSSセンサを用いたUVインデックス推定 Conference Award
研究報告ユビキタスコンピューティングシステム(UBI), 2022-UBI-76 (20), 情報処理学会, 2022, ISSN: 2188-8698.
Abstract | BibTeX | Tags: | Links:
@conference{weko_222066_1,
title = {スマートフォンのGNSSセンサを用いたUVインデックス推定},
author = {石岡陸 and 坪内孝太 and 西山勇毅 and 瀬崎薫},
url = {http://id.nii.ac.jp/1001/00221996/},
issn = {2188-8698},
year = {2022},
date = {2022-11-01},
urldate = {2022-11-01},
booktitle = {研究報告ユビキタスコンピューティングシステム(UBI)},
volume = {2022-UBI-76},
number = {20},
pages = {1 - 7},
publisher = {情報処理学会},
abstract = {個人の紫外線被曝量モニタリングは,個々人が最適な量の紫外線を浴びることを目的に,盛んに研究されてきた.先行研究では,スマートフォンのカメラや光センサ,ウェアラブルUVセンサを用いた UV 量の推定が提案されてきた.我々は,スマートフォンの GNSS センサを活用した世界初の UV インデックス推定手法を提案する.カメラや光センサを継続的に露出させなければならないような手法と比較して,GNSS を用いた方法は,普段のようにスマートフォンを身につけるだけで推定を可能にするという原理的な利点がある.GNSS による推定の第一歩として,1 つの地域の 3 ヶ所において GNSS データを収集し,OpenUV というAPI をベースラインとして用い,提案手法の有効性を検証した.提案手法は,平均絶対誤差(MAE)0.1523 を達成し,ベースラインを圧倒的に上回った.本研究によって実際のデータに対して提案システムの有効性が証明されたことは,人々が容易に日々の UV 被曝量を把握できるような未来への大きな一歩となることが期待される.},
keywords = {},
pubstate = {published},
tppubtype = {conference}
}
笠原有貴, 龐岩博, 樫山武浩, 関本義秀, 瀬崎薫
擬似人流データにおける時刻表を考慮した自治体全域の交通手段の推計 ー静岡県裾野市を対象にー Conference
地理情報システム学会 第31回学術研究発表大会(沖縄), 2022.
Abstract | BibTeX | Tags: GTFS, 交通手段選択, 人流データ | Links:
@conference{gis_kasahara2022,
title = {擬似人流データにおける時刻表を考慮した自治体全域の交通手段の推計 ー静岡県裾野市を対象にー},
author = {笠原有貴 and 龐岩博 and 樫山武浩 and 関本義秀 and 瀬崎薫},
url = {https://www.gisa-japan.org/conferences/},
year = {2022},
date = {2022-10-29},
urldate = {2022-10-29},
booktitle = {地理情報システム学会 第31回学術研究発表大会(沖縄)},
abstract = {In recent years, it has become important to understand people flow in various fields such as infectious disease control, and there are various types of means of understanding people flow, such as GPS data and person-trip survey data. However, these data are difficult to share due to privacy protection issues. Based on this, Kashiyama et al. have developed simulations using statistical data to create pseudo-people flow data, which can be shared. Although this data is highly accurate, it does not take into account timetables in terms of people's traffic behavior, which would improve the accuracy by reproducing traffic behavior according to timetables. In this study, we evaluated the accuracy of the pseudo-people flow data created by Kashiyama et al. for Susono City, Shizuoka Prefecture, by estimating the transportation modes with timetables taken into account.},
keywords = {GTFS, 交通手段選択, 人流データ},
pubstate = {published},
tppubtype = {conference}
}
Haoyu Zhuang, Liqiang Xu, Yuuki Nishiyama, Kaoru Sezaki
A preliminary study for monitoring hygiene behaviors by using multiple sensors on a wrist Conference Self Archive
研究報告ユビキタスコンピューティングシステム(UBI), 2022-UBI-75 (27), 2022, ISSN: 2188-8698.
Abstract | BibTeX | Tags: | Links:
@conference{ubi75_zhuang,
title = {A preliminary study for monitoring hygiene behaviors by using multiple sensors on a wrist},
author = {Haoyu Zhuang and Liqiang Xu and Yuuki Nishiyama and Kaoru Sezaki},
url = {http://id.nii.ac.jp/1001/00219769/
https://www.mcl.iis.u-tokyo.ac.jp/wp-content/uploads/2022/12/IPSJ-UBI22075027.pdf},
issn = {2188-8698},
year = {2022},
date = {2022-08-29},
urldate = {2022-08-29},
booktitle = {研究報告ユビキタスコンピューティングシステム(UBI)},
volume = {2022-UBI-75},
number = {27},
pages = {1--7},
abstract = {Under the epidemic of COVID-19, it is important to automatically detect epidemic protective behaviors without a user's intention. Existing studies utilized only sensor data from IMU for detecting epidemic protection behaviors. However, the performance of the classification for similar behaviors could be unsatisfactory due to the single data dimension. It is well known that washing hands and hand sterilization are essential personal hygiene behaviors. In this paper, we use multiple sensor data from an off-the-shelf smartwatch and smartphone for detecting these three behaviors. Our performance evaluation indicated that our proposed method has improved accuracy for classifying the target epidemic protective behaviors over previous methods. Furthermore, for applying our method in reality, we developed a prototype for detecting these behaviors on a wearable device, which allows us to utilize our method widely in health habits monitoring.},
keywords = {},
pubstate = {published},
tppubtype = {conference}
}
小野翔多, 三好匠, 山崎託, 西山勇毅, 瀬崎薫
無線マルチホップ連合学習へ向けた実装実験 Conference
電子情報通信学会ソサイエティ大会, オンライン, 2022.
BibTeX | Tags:
@conference{ieice2022_ono,
title = {無線マルチホップ連合学習へ向けた実装実験},
author = {小野翔多 and 三好匠 and 山崎託 and 西山勇毅 and 瀬崎薫},
year = {2022},
date = {2022-06-30},
urldate = {2022-06-30},
booktitle = {電子情報通信学会ソサイエティ大会},
address = {オンライン},
keywords = {},
pubstate = {published},
tppubtype = {conference}
}
細沼恵里, 三好匠, 山崎託, 西山勇毅, 瀬崎薫
LPWAによる屋内混雑度推定に向けた基礎検討 Conference
電子情報通信学会ソサイエティ大会, オンライン, 2022.
BibTeX | Tags:
@conference{ieice2022_hosonuma,
title = {LPWAによる屋内混雑度推定に向けた基礎検討},
author = {細沼恵里 and 三好匠 and 山崎託 and 西山勇毅 and 瀬崎薫},
year = {2022},
date = {2022-06-30},
urldate = {2022-06-30},
booktitle = {電子情報通信学会ソサイエティ大会},
address = {オンライン},
keywords = {},
pubstate = {published},
tppubtype = {conference}
}
荘昊昱, 韓増易, 西山勇毅, 瀬崎薫
Face-Touch Detection with Smartwatch by CNN: An Experimental Lab Study Conference
電子情報通信学会ソサイエティ大会, オンライン, 2022.
BibTeX | Tags:
@conference{ieice2022_zhuang,
title = {Face-Touch Detection with Smartwatch by CNN: An Experimental Lab Study},
author = {荘昊昱 and 韓増易 and 西山勇毅 and 瀬崎薫},
year = {2022},
date = {2022-06-30},
urldate = {2022-06-30},
booktitle = {電子情報通信学会ソサイエティ大会},
address = {オンライン},
keywords = {},
pubstate = {published},
tppubtype = {conference}
}
下条和暉, 西山勇毅, 瀬崎薫
イアラブルデバイスを用いた街歩き時におけるユーザの道迷い状態の検知 Conference
研究報告ユビキタスコンピューティングシステム(UBI), 2022-UBI-74 , 2022.
Abstract | BibTeX | Tags: イアラブルデバイス, ナビゲーション, 行動認識 | Links:
@conference{ubi74_shimojo,
title = {イアラブルデバイスを用いた街歩き時におけるユーザの道迷い状態の検知},
author = {下条和暉 and 西山勇毅 and 瀬崎薫},
url = {https://www.ipsj.or.jp/kenkyukai/event/ubi74.html},
year = {2022},
date = {2022-06-06},
urldate = {2022-06-06},
booktitle = {研究報告ユビキタスコンピューティングシステム(UBI)},
volume = {2022-UBI-74},
pages = {1 - 6},
abstract = {街歩きにおいて,ユーザの迷い状態を検知できれば効率的で安全な道案内が実現出来る.イアラブルデバイスは,耳に装着するウェアラブルデバイスであり,搭載された行動認知機構や音声インターフェスによってユーザの状態を把握することが出来る.イアラブルデバイスを活用することえユーザの街中における道迷い状態を検知し,音声案内が可能になると考えられるが,その手法についてはまだ明らかになっていない.そこで本研究では,イアラブルデバイスに搭載されているモーションセンサから収集したデータを用いることで,ユーザの道迷い状態を検知する手法を提案する.},
keywords = {イアラブルデバイス, ナビゲーション, 行動認識},
pubstate = {published},
tppubtype = {conference}
}
小野翔多, 西山勇毅, 瀬崎薫
スマートウォッチを用いたマスク装着の促進手法 Conference
情報処理学会 IoT行動変容学研究グループ キックオフシンポジウム, 2022.
Abstract | BibTeX | Tags: Activity Recognition, behavior change, Wearable sensing | Links:
@conference{ipsjbit-onob,
title = {スマートウォッチを用いたマスク装着の促進手法},
author = {小野翔多 and 西山勇毅 and 瀬崎薫},
url = {http://www.sig-bti.jp/event/kickoffinfo.html
http://www.sig-bti.jp/event/img/Proceedings%20of%20%20IPSJBTI%20Kickoff%20Symposium.pdf},
year = {2022},
date = {2022-04-16},
urldate = {2022-04-16},
booktitle = {情報処理学会 IoT行動変容学研究グループ キックオフシンポジウム},
pages = {56--57},
abstract = {新型コロナウイルス感染症が世界的に蔓延しており,感染拡大を予防するために,マスクの装着などの飛沫感染のリスクを下げる行動が求められている [1].感染リスクを低下させるためには、常時マスクを装着することが望ましいが,無意識のうちにマスク非装着のまま行動してしまうことがしばしば発生する.マスク装着を効果的に促すためには,個々人のマスク装着状態を自動検知し,その状態に応じてユーザに行動変容を促すことが求められる.しかし,これまでのところ,マスク装着状態を市販の端末のみを用いて常時検出する手法はまだ提案されていない.本稿では,スマートウォッチに搭載されている複数のセンサを用いてマスク装着状態を自動検知し,マスク非装着のユーザに通知することで,マスク装着の行動を促進させる手法を提案する.},
keywords = {Activity Recognition, behavior change, Wearable sensing},
pubstate = {published},
tppubtype = {conference}
}
小野翔多, 西山勇毅, 瀬崎薫
ウェアラブルデバイスのマイクを用いたマスク装着状態の検知に向けて Conference
第102回MBL・第73回UBI合同研究発表会, online, 2022.
Abstract | BibTeX | Tags: スマートウォッチ, マスク装着情報, 感染症予防, 機械学習, 音声データ | Links:
@conference{nokeyb,
title = {ウェアラブルデバイスのマイクを用いたマスク装着状態の検知に向けて},
author = {小野翔多 and 西山勇毅 and 瀬崎薫},
url = {https://www.ipsj.or.jp/kenkyukai/event/mbl102ubi73.html},
year = {2022},
date = {2022-03-07},
urldate = {2022-03-07},
booktitle = {第102回MBL・第73回UBI合同研究発表会},
address = {online},
abstract = {感染症予防において,マスクの装着は飛沫による感染症への感染リスクを低下させる有効な手段の一つである.日常生活中におけるマスク装着の有無やその種類を自動的に検出できれば,感染リスクの判定やJust-in-Timeでの注意喚起,行動記録など様々な応用サービスが実現可能になる.しかし,映像処理や専用機器を用いずに,日常生活中において自動的にマスクの装着状態を検知する手法はまだ提案されていない.本研究では,市販のスマートウォッチの内蔵マイクのみを用いてマスクの装着状態を検出する.マスク装着時の音声特性調査とマスク装着状態判定モデルの評価実験から,マスク装着時・未装着時の音声データと機械学習を用いてマスク装着状態を検知できる可能性が示唆された.},
keywords = {スマートウォッチ, マスク装着情報, 感染症予防, 機械学習, 音声データ},
pubstate = {published},
tppubtype = {conference}
}
牛島秀暢, 西山勇毅, 瀬崎薫
タクシー車両を用いたマイクロモビリティ再配置 Conference Award
情報処理学会 第84回全国大会(愛媛大学), 情報処理学会, 2022.
BibTeX | Tags: | Links:
@conference{ipsj2022_ushijima,
title = {タクシー車両を用いたマイクロモビリティ再配置},
author = {牛島秀暢 and 西山勇毅 and 瀬崎薫},
url = {https://www.ipsj.or.jp/event/taikai/84/index.html},
year = {2022},
date = {2022-03-05},
urldate = {2022-03-05},
booktitle = {情報処理学会 第84回全国大会(愛媛大学)},
publisher = {情報処理学会},
keywords = {},
pubstate = {published},
tppubtype = {conference}
}
小松勇輝, 下条和暉, 西山勇毅, 瀬崎薫
腕時計型ウェアラブルデバイスを用いた会話時間計測手法の構築に向けて Conference Award
情報処理学会 第84回全国大会(愛媛大学), 情報処理学会, 2022.
BibTeX | Tags: | Links:
@conference{ipsj2022_komatsu,
title = {腕時計型ウェアラブルデバイスを用いた会話時間計測手法の構築に向けて},
author = {小松勇輝 and 下条和暉 and 西山勇毅 and 瀬崎薫},
url = {https://www.ipsj.or.jp/event/taikai/84/index.html},
year = {2022},
date = {2022-03-05},
urldate = {2022-03-05},
booktitle = {情報処理学会 第84回全国大会(愛媛大学)},
publisher = {情報処理学会},
keywords = {},
pubstate = {published},
tppubtype = {conference}
}
小野翔多, 山崎託, 三好匠, 西山勇毅, 瀬崎薫
[奨励講演] 移動体通信併用型MANETにおける端末密度を用いた中継領域制御 Conference
電子情報通信学会 情報通信マネジメント研究会(ICM), online, 2022.
Abstract | BibTeX | Tags: MANET, モバイルネットワーク, 中継領域, 通信負荷 | Links:
@conference{nokey,
title = {[奨励講演] 移動体通信併用型MANETにおける端末密度を用いた中継領域制御},
author = {小野翔多 and 山崎託 and 三好匠 and 西山勇毅 and 瀬崎薫},
url = {https://www.ieice.org/ken/program/index.php?tgs_regid=55edfba9b2118ae5769f94e16eeacecd10dd08f2d3aaa7122a8fb958ddce74ee&tgid=IEICE-ICM},
year = {2022},
date = {2022-03-04},
urldate = {2022-03-04},
booktitle = {電子情報通信学会 情報通信マネジメント研究会(ICM)},
address = {online},
abstract = {Mobile ad-hoc network(MANET)は,端末間の通信のみで自律分散的にネットワークを構築できる.
しかし,通信ネットワーク構築時に制御メッセージを全方位にフラッディングするため,通信資源を過剰に消費する.
位置情報を収集できる端末が通信ネットワーク構築に参加する環境では,端末の位置情報を組み合わせることで,より効率的なフラッディングが可能になると考えられる.
本稿では,端末の位置情報に基づいて仮想通信領域を作成し,その領域内の端末にのみフラッディングすることで,経路探索を効率化する手法を提案する.
シミュレーションによる評価の結果,提案手法は仮想通信領域を柔軟に作成し,過剰な通信資源消費の抑制と通信遅延の削減を実現できることが分かった.},
key = {MANET,位置情報,モバイルネットワーク,中継領域},
keywords = {MANET, モバイルネットワーク, 中継領域, 通信負荷},
pubstate = {published},
tppubtype = {conference}
}
西山勇毅, 瀬崎薫
スマートフォンを用いたベビーカーのコンテキスト検知に向けた一検討 Conference
電子情報通信学会総合大会(オンライン), 電子情報通信学会, 2022.
Abstract | BibTeX | Tags: Activity Recognition, context-awareness, Mobile sensing | Links:
@conference{ieice2022,
title = {スマートフォンを用いたベビーカーのコンテキスト検知に向けた一検討},
author = {西山勇毅 and 瀬崎薫},
url = {https://www.ieice-taikai.jp/2022general/jpn/index.html},
year = {2022},
date = {2022-03-01},
urldate = {2022-03-01},
booktitle = {電子情報通信学会総合大会(オンライン)},
publisher = {電子情報通信学会},
abstract = {ベビーカーは,子供がいる家庭の約70%が所有し,週に一回以上利用する家庭は73.8%であると報告されるなど,保有率・利用率ともに高い.ベビーカーは乳幼児を運搬するため,安全性と快適性が高く求められるが,街中・施設内において安全・快適な走行・滞在可能なルートや場所,時間を手軽に知ることは難しい.これらの情報を検知することで,様々な応用アプリケーションを実現できる.そこで本稿では,スマートフォンを用いたベビーカー移動時の急停止や段差との衝突,路面状態といったベビーカー移動に関するコンテキスト検知の可能性を調査し,その結果を報告する.},
keywords = {Activity Recognition, context-awareness, Mobile sensing},
pubstate = {published},
tppubtype = {conference}
}
笠原有貴, 西山勇毅, 瀬崎薫
ウェアラブルデバイスを用いた子育てコンテキストの検知に向けて Conference
研究報告ヒューマンコンピュータインタラクション研究会(CHI), 情報処理学会, 石垣島, 2022.
Abstract | BibTeX | Tags: モバイル・ウェアラブルセンシング, 子育てコンテキスト, 行動認識 | Links:
@conference{jchi2022_kasahara,
title = {ウェアラブルデバイスを用いた子育てコンテキストの検知に向けて},
author = {笠原有貴 and 西山勇毅 and 瀬崎薫},
url = {http://www.sighci.jp/events/sig/196},
year = {2022},
date = {2022-01-11},
urldate = {2022-01-11},
booktitle = {研究報告ヒューマンコンピュータインタラクション研究会(CHI)},
publisher = {情報処理学会},
address = {石垣島},
abstract = {女性の社会進出や核家族化,産後うつ問題など,子育て環境は大きく変化しており,子育ての効率
化や子育て支援は社会的に大きな課題となっている.本研究では,近年普及傾向にあるウェアラブルデバイスを用いて,ミルクやオムツ替え,お散歩など「親」が「乳幼児」に行う子育て行動の検知技術の開発を行う.子育て中のモーションデータを腕時計型のウェアラブルデバイスに搭載されたモーションセンサを用いて収集し,収集データと機械学習を用いて子育てコンテキストの検知モデルを構築する.本稿では,9種類の子育てコンテキストを定義し,子育てコンテキストの検知モデルの構築とその精度評価を行なった.},
keywords = {モバイル・ウェアラブルセンシング, 子育てコンテキスト, 行動認識},
pubstate = {published},
tppubtype = {conference}
}
Zengyi Han, Xuefu Dong, Yuuki Nishiyama, Kaoru Sezaki
Preliminary Study for Classifying Baby Stroller-related Parenting using Smartphones Book Chapter
In: Ahad, Md Atiqur Rahman; Inoue, Sozo; Roggen, Daniel; Fujinami, Kaori (Ed.): Activity and Behavior Computing, Springer Singapore, UK, 2022.
Abstract | BibTeX | Tags: | Links:
@inbook{abc2022_han,
title = {Preliminary Study for Classifying Baby Stroller-related Parenting using Smartphones},
author = {Zengyi Han and Xuefu Dong and Yuuki Nishiyama and Kaoru Sezaki},
editor = {Md Atiqur Rahman Ahad and Sozo Inoue and Daniel Roggen and Kaori Fujinami},
url = {https://abc-research.github.io/ },
year = {2022},
date = {2022-10-27},
urldate = {2022-10-27},
booktitle = {Activity and Behavior Computing},
publisher = {Springer Singapore},
address = {UK},
abstract = {The stroller, as a necessary tool for parents' daily lives of infant care, is rich in information about babysitting-related, however, they are unexplored. Existing stroller studies usually focus on the hardware aspects such as automatic braking and self-propelling, leaving less attention on infant mobility. Nevertheless, such potential information might open up new perspectives to urban studies, physiology studies, and studies in other fields. Therefore, to extract the potential information from everyday stroller usage, we proposed the idea of leveraging ubiquitous devices such as smartphones to automatically monitor different stroller-related behaviors. Two built-in inertial measurement units (IMU) could enable a daily stroll-related interaction log, analysis, and eventually better parenting.},
keywords = {},
pubstate = {published},
tppubtype = {inbook}
}
Issey Sukeda, Hiroaki Murakami, Yuuki Nishiyama, Hiroaki Murakami, Yoshihiro Kawahara
Poster abstract: Recursive Queueing Estimation Using Smartphone-based Acoustic Ranging Inproceedings
In: Proceedings of the 20th Conference on Embedded Networked Sensor Systems, Boston, USA, Association for Computing Machinery, New York, NY, USA, 2022.
BibTeX | Tags: Acoustic sensing, Mobile sensing, queueing
@inproceedings{sensys2022_sukeda,
title = {Poster abstract: Recursive Queueing Estimation Using Smartphone-based Acoustic Ranging},
author = {Issey Sukeda and Hiroaki Murakami and Yuuki Nishiyama and Hiroaki Murakami and Yoshihiro Kawahara},
year = {2022},
date = {2022-11-06},
urldate = {2022-11-06},
booktitle = {Proceedings of the 20th Conference on Embedded Networked Sensor Systems, Boston, USA},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
series = {SenSys '22},
keywords = {Acoustic sensing, Mobile sensing, queueing},
pubstate = {published},
tppubtype = {inproceedings}
}
Liqiang Xu, Yuuki Nishiyama, Masamichi Shimosaka, Kota Tsubouchi, Kaoru Sezaki
Poster abstract: Convolutional Compressed Sensing for Smartphone Acceleration Data Compression Inproceedings
In: Proceedings of the 20th Conference on Embedded Networked Sensor Systems, Boston, USA, Association for Computing Machinery, New York, NY, USA, 2022.
BibTeX | Tags: Acceleration data, Compressed sensing, Convolutional neural network, Smartphone sensor
@inproceedings{sensys2022_xu,
title = {Poster abstract: Convolutional Compressed Sensing for Smartphone Acceleration Data Compression},
author = {Liqiang Xu and Yuuki Nishiyama and Masamichi Shimosaka and Kota Tsubouchi and Kaoru Sezaki},
year = {2022},
date = {2022-11-06},
urldate = {2022-11-06},
booktitle = {Proceedings of the 20th Conference on Embedded Networked Sensor Systems, Boston, USA},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
series = {SenSys '22},
keywords = {Acceleration data, Compressed sensing, Convolutional neural network, Smartphone sensor},
pubstate = {published},
tppubtype = {inproceedings}
}
Riku Ishioka, Yuuki Nishiyama, Kota Tsubouchi, Kaoru Sezaki
Poster abstract: UV index estimation leveraging GNSS sensors on smartphones Inproceedings
In: Proceedings of the 20th Conference on Embedded Networked Sensor Systems, Boston, USA, Association for Computing Machinery, New York, NY, USA, 2022.
BibTeX | Tags: GNSS, Passive mobile sensing, smartphone, UV index estimation
@inproceedings{sensys2022_ishioka,
title = {Poster abstract: UV index estimation leveraging GNSS sensors on smartphones},
author = {Riku Ishioka and Yuuki Nishiyama and Kota Tsubouchi and Kaoru Sezaki},
year = {2022},
date = {2022-11-06},
urldate = {2022-11-06},
booktitle = {Proceedings of the 20th Conference on Embedded Networked Sensor Systems, Boston, USA},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
series = {SenSys '22},
keywords = {GNSS, Passive mobile sensing, smartphone, UV index estimation},
pubstate = {published},
tppubtype = {inproceedings}
}
Ryoto Suzuki, Yuuki Nishiyama, Hiroaki Murakami, Yoshihiro Kawahara, Kaoru Sezaki
Poster abstract: Room Scale Localization Improvement Utilizing Stay Time Characteristics of Each Room Inproceedings
In: Proceedings of the 20th Conference on Embedded Networked Sensor Systems, Boston, USA, Association for Computing Machinery, New York, NY, USA, 2022.
BibTeX | Tags: Bluetooth low energy, iBeacon, Indoor localization, Received signal strength indicator
@inproceedings{sensys2022_suzuki,
title = {Poster abstract: Room Scale Localization Improvement Utilizing Stay Time Characteristics of Each Room},
author = {Ryoto Suzuki and Yuuki Nishiyama and Hiroaki Murakami and Yoshihiro Kawahara and Kaoru Sezaki},
year = {2022},
date = {2022-11-06},
urldate = {2022-11-06},
booktitle = {Proceedings of the 20th Conference on Embedded Networked Sensor Systems, Boston, USA},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
series = {SenSys '22},
keywords = {Bluetooth low energy, iBeacon, Indoor localization, Received signal strength indicator},
pubstate = {published},
tppubtype = {inproceedings}
}
Suxing Lyu, Tianyang Han, Yuuki Nishiyama, Kaoru Sezaki, Takahiko Kusakabe
A Plug-in Memory Network for Trip Purpose Classification Inproceedings Open Access
In: Proceedings of the 30th International Conference on Advances in Geographic Information Systems, Association for Computing Machinery, Seattle, Washington, 2022, ISBN: 9781450395298.
Abstract | BibTeX | Tags: Human mobility, matrix factorization, memory network, trip purpose | Links:
@inproceedings{10.1145/3557915.3560969,
title = {A Plug-in Memory Network for Trip Purpose Classification},
author = {Suxing Lyu and Tianyang Han and Yuuki Nishiyama and Kaoru Sezaki and Takahiko Kusakabe},
url = {https://doi.org/10.1145/3557915.3560969},
doi = {10.1145/3557915.3560969},
isbn = {9781450395298},
year = {2022},
date = {2022-11-01},
urldate = {2022-11-01},
booktitle = {Proceedings of the 30th International Conference on Advances in Geographic Information Systems},
publisher = {Association for Computing Machinery},
address = {Seattle, Washington},
series = {SIGSPATIAL '22},
abstract = {Trip purpose plays a critical role in reflecting human mobility behavior. However, it is relatively difficult to determine. With the rapid growth of urban mobility and big mobile data, utilizing these data for trip purpose classification has been a long-term objective to enhance travel demand and behavior models used in urban planning. Although studies on this topic have been extensively conducted, most past research preferred relying on traveler attributes or long-term travel histories to achieve accurate results. These data could be privacy sensitive and often do not satisfy real-world scenarios. This study addresses the problem of classifying trip purpose by only space activity information to avoid privacy conflict. 1) External memories are collected from factorized components based on the non-negative Tucker decomposition scheme. 2) These memories are extended by the cross-attention mechanism to achieve feature augmentation. 3) Subsequently, a novel concept called "latent mode alignment" is proposed. By leveraging the linear characteristics of external memories, geographic contextual latent modes are represented and matched with travel activities; this procedure is called älignment." 4) The gate mechanism controls the eventual outputs for update. The proposed plug-in memory network (PMN), combined with baseline models, effectively outperforms the original settings. Moreover, combination models are validated with strong tolerance through missing data tests, which are common and problematic in real-world scenarios. The proposed PMN is a plug-and-play design that is easy to combine with newly developed classification models, and other memory collection methods can be expected.},
keywords = {Human mobility, matrix factorization, memory network, trip purpose},
pubstate = {published},
tppubtype = {inproceedings}
}
Yuuki Nishiyama, Hiroaki Murakami, Ryoto Suzuki, Kazusato Oko, Issey Sukeda, Kaoru Sezaki, Yoshihiro Kawahara
MOCHA: Mobile Check-in Application for University Campuses Beyond COVID-19 Inproceedings Open Access
In: The Twenty-third International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing, ACM, Seoul, Republic of Korea, 2022, ISBN: 978-1-4503-9165-8/22/10.
Abstract | BibTeX | Tags: Bluetooth beacon, COVID-19, Mobile sensing, Shared space management, Social Implementation | Links:
@inproceedings{mobicovid22_nishiyama,
title = {MOCHA: Mobile Check-in Application for University Campuses Beyond COVID-19},
author = {Yuuki Nishiyama and Hiroaki Murakami and Ryoto Suzuki and Kazusato Oko and Issey Sukeda and Kaoru Sezaki and Yoshihiro Kawahara},
doi = {10.1145/3492866.3557736},
isbn = {978-1-4503-9165-8/22/10},
year = {2022},
date = {2022-10-18},
urldate = {2022-10-18},
booktitle = {The Twenty-third International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing},
volume = {MobiHoc '22},
publisher = {ACM},
address = {Seoul, Republic of Korea},
abstract = {Users and operators of shared spaces must ensure safety in such areas to prevent the spread of COVID-19. Although each organization has operated a variety of safety-related systems, including contact tracing, congestion monitoring, and check-in services, it is unclear what elements, such as privacy protection level, benefits, and permission procedures, have promoted the usage of these systems. In this study, we created MOCHA, a platform for sharing and tracking room-level locations. This platform automatically detects visited places by scanning Bluetooth beacons in each room using smartphones and shares location data according to predefined user settings. The collected data is used for room-level contact tracing, congestion monitoring, and reservation services. According to >6,500 users' usage data for a year in a university, outlining the advantages of utilizing the app encouraged people to install the app, and reinforced connections in small private groups are encouraged to use the app continuously.},
keywords = {Bluetooth beacon, COVID-19, Mobile sensing, Shared space management, Social Implementation},
pubstate = {published},
tppubtype = {inproceedings}
}
Xuefu Dong, Zengyi Han, Yuuki Nishiyama, Kaoru Sezaki
DoubleCheck: Single-Handed Cycling Detection with a Smartphone Inproceedings
In: 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 268-274, 2022.
Abstract | BibTeX | Tags: | Links:
@inproceedings{smc2022_dong,
title = {DoubleCheck: Single-Handed Cycling Detection with a Smartphone},
author = {Xuefu Dong and Zengyi Han and Yuuki Nishiyama and Kaoru Sezaki},
doi = {10.1109/SMC53654.2022.9945380},
year = {2022},
date = {2022-10-09},
urldate = {2022-10-09},
booktitle = {2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC)},
pages = {268-274},
abstract = {Riding bicycles with only one hand on the handlebar can severely undermine the operator’s steering capability and threaten road and transportation safety. Prior studies have exploited motion sensors to detect riding contexts and recognize related behaviors. Nevertheless, they fail to integrate a scheme to account for single-handed riding with elements crucial to danger prevention: awareness of the surroundings, response to danger, and convenient adoption. In this work, we proposed, designed, and implemented DoubleCheck: a smartphone-based real-time framework for cycling hand detection and distraction recognition. The method monitors handlebar holding on different road surfaces and recognizes hazardous distraction activities related to single-handed cycling using motion signals captured by a built-in inertial measurement unit in a handlebar-borne smartphone. It was designed on the premise that single-handed cycling enabled operators to adapt their body movements to different (often distracting) activities. We conducted an evaluation experiment using 22 participants on asphalt and pavement. The results indicate that DoubleCheck achieves an F1-score of 0.96 for hand detection and 0.69 for distraction recognition, demonstrating its efficacy as a candidate rider-safety precautionary measure.},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
Kazuki Shimojo, Zengyi Han, Yuuki Nishiyama, Kaoru Sezaki
A Preliminary Study for Detecting Visual Search Behaviors During Street Walking Using Earable Device Inproceedings
In: Adjunct Proceedings of the 2022 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2022 ACM International Symposium on Wearable Computers, pp. 19–20, Association for Computing Machinery, USA and UK, 2022.
@inproceedings{ubicomp2022_shimojo,
title = {A Preliminary Study for Detecting Visual Search Behaviors During Street Walking Using Earable Device},
author = {Kazuki Shimojo and Zengyi Han and Yuuki Nishiyama and Kaoru Sezaki},
year = {2022},
date = {2022-09-12},
urldate = {2022-09-12},
booktitle = {Adjunct Proceedings of the 2022 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2022 ACM International Symposium on Wearable Computers},
pages = {19–20},
publisher = {Association for Computing Machinery},
address = {USA and UK},
series = {UbiComp '22},
abstract = {Map applications on smartphones are powerful navigation tools for walking among places to visit for the first time and are used widely. On the other hand, checking the application tend to cause trouble on the road such as collisions with people, cars, and objects. To prevent the troubles, we need to detect the walker’s context regarding visual search behaviors and provide appropriate navigation information for the walker. In this paper, we propose a method to detect a walker’s context regarding visual search behaviors by using motion sensors on an earable device. We collected and investigated motion and gaze data from an earable device and gaze tracker respectively during street walking from five participants. Based on the investigation, we create a machine learning model for detecting looking around, smartphone, or normal during walking
and stopping conditions. Our evaluations show that our models can detect more than 95% of walking and stopping conditions, and 71% of three details conditions during walking, respectively},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
Zengyi Han, Yuuki Nishiyama, Kaoru Sezaki
A Micro-mobility Sensing System to Portray Riding Styles Inproceedings
In: Adjunct Proceedings of the 2022 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2022 ACM International Symposium on Wearable Computers, pp. 19–20, Association for Computing Machinery, USA and UK, 2022.
@inproceedings{ubicomp2022_han,
title = {A Micro-mobility Sensing System to Portray Riding Styles},
author = {Zengyi Han and Yuuki Nishiyama and Kaoru Sezaki},
year = {2022},
date = {2022-09-12},
urldate = {2022-09-12},
booktitle = {Adjunct Proceedings of the 2022 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2022 ACM International Symposium on Wearable Computers},
pages = {19–20},
publisher = {Association for Computing Machinery},
address = {USA and UK},
series = {UbiComp '22},
abstract = {Riding style concerns the way a micro-mobility rider chooses to ride, and it plays a significant role in traffic safety. Portraying a rider’s
riding style is a useful way to guide them towards safer riding behaviors, and offer fine-grained information for insurance companies
and bike-sharing companies to provide better services. To this end, we propose a micro-mobility sensing system to portray riding
styles. Utilizing helmet-mounted and bicycle handle-mounted inertial sensors, our sensing system is able to monitor the micro-mobility
movement status, detect the maneuver behaviors, and the safety check condition of riders. With 10 participants’ experimental data,
we present the feasibility of detecting maneuver behavior and recording the data that characterize the rider’s riding style with our
sensing system, and therefore make it a viable addition to the micro-mobility.},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
Zengyi Han, Xuefu Dong, Yuuki Nishiyama, Kaoru Sezaki
Poster: Head Dynamics Enabled Riding Maneuver Prediction Inproceedings
In: Proceedings of the 20th Annual International Conference on Mobile Systems, Applications, and Services, Association for Computing Machinery, Portland, Oregon, 2022.
Abstract | BibTeX | Tags: Activity Recognition, Mobile sensing, Wearable sensing | Links:
@inproceedings{mobisys2022_han,
title = {Poster: Head Dynamics Enabled Riding Maneuver Prediction},
author = {Zengyi Han and Xuefu Dong and Yuuki Nishiyama and Kaoru Sezaki},
url = {https://www.sigmobile.org/mobisys/2022/},
year = {2022},
date = {2022-06-27},
urldate = {2022-06-27},
booktitle = {Proceedings of the 20th Annual International Conference on Mobile Systems, Applications, and Services},
publisher = {Association for Computing Machinery},
address = {Portland, Oregon},
series = {MobiSys '22},
abstract = {While micro-mobility brings convenience to the modern city, they also cause various social problems such as traffic accidents, casualties, and huge economic losses. Wearing protective equipment has become the primary recommendation for safe riding, but passive protection cannot prevent accidents from happening after all. Thus, timely predicting the rider's maneuver is essential for more active protection and buying more time to avoid potential accidents from happening. In this poster, we explore the feasibility of using riders’ head dynamics to predict their riding maneuvers. Through ten participants’ preliminary study, we observed that not only do riders’ head movements appear ahead of their maneuvers but also head movement patterns are distinct with different maneuver intentions. We then construct a deep learning network using Long Short Term Memory, achieving 89% of accuracy on maneuver prediction.},
keywords = {Activity Recognition, Mobile sensing, Wearable sensing},
pubstate = {published},
tppubtype = {inproceedings}
}
Yuki Komatsu, Kazuki Shimojo, Yuuki Nishiyama, Kaoru Sezaki
Toward Measuring Conversation Duration Using a Wristwatch-type Wearable Device Inproceedings
In: 2022 IEEE International Conference on Smart Computing (SMARTCOMP), IEEE Computer Society, Espoo, Finland, 2022.
BibTeX | Tags: Context-recognition, Conversation Events, Edge Processing, Sound Classification, Wearable Computing
@inproceedings{smartcomp2022_komatsu,
title = {Toward Measuring Conversation Duration Using a Wristwatch-type Wearable Device},
author = {Yuki Komatsu and Kazuki Shimojo and Yuuki Nishiyama and Kaoru Sezaki},
year = {2022},
date = {2022-06-24},
urldate = {2022-06-24},
booktitle = {2022 IEEE International Conference on Smart Computing (SMARTCOMP)},
publisher = {IEEE Computer Society},
address = {Espoo, Finland},
keywords = {Context-recognition, Conversation Events, Edge Processing, Sound Classification, Wearable Computing},
pubstate = {published},
tppubtype = {inproceedings}
}
Yuki Kasahara, Yuuki Nishiyama, Kaoru Sezaki
Detecting Childcare Activities Using an Off-the-shelf Smartwatch Inproceedings
In: 2022 IEEE International Conference on Smart Computing (SMARTCOMP), IEEE Computer Society, Espoo, Finland, 2022.
BibTeX | Tags: Activity Recognition, Childcare Activity, Wearable sensing
@inproceedings{smartcomp2022_kasahara,
title = {Detecting Childcare Activities Using an Off-the-shelf Smartwatch},
author = {Yuki Kasahara and Yuuki Nishiyama and Kaoru Sezaki},
year = {2022},
date = {2022-06-01},
urldate = {2022-06-01},
booktitle = {2022 IEEE International Conference on Smart Computing (SMARTCOMP)},
publisher = {IEEE Computer Society},
address = {Espoo, Finland},
keywords = {Activity Recognition, Childcare Activity, Wearable sensing},
pubstate = {published},
tppubtype = {inproceedings}
}
Liqiang Xu, Yuuki Nishiyama, Kaoru Sezaki
Enhancing Self-Protection: What Influences Human’s Epidemic Prevention Behavior during the COVID-19 Pandemic Inproceedings
In: Distributed, Ambient and Pervasive Interactions. Smart Living, Learning, Well-Being and Health, Art and Creativity: 10th International Conference, DAPI 2022, Held as Part of the 24th HCI International Conference, HCII 2022, Virtual Event, June 26 – July 1, 2022, Proceedings, Part II, pp. 336–351, Springer-Verlag, Berlin, Heidelberg, 2022, ISBN: 978-3-031-05430-3.
Abstract | BibTeX | Tags: COVID-19, Infection prevention, Mobile sensing, Persuasive technology., Self-protection behavior, Self-Tracking | Links:
@inproceedings{10.1007/978-3-031-05431-0_23,
title = {Enhancing Self-Protection: What Influences Human’s Epidemic Prevention Behavior during the COVID-19 Pandemic},
author = {Liqiang Xu and Yuuki Nishiyama and Kaoru Sezaki},
url = {https://doi.org/10.1007/978-3-031-05431-0_23},
doi = {10.1007/978-3-031-05431-0_23},
isbn = {978-3-031-05430-3},
year = {2022},
date = {2022-06-01},
urldate = {2022-01-01},
booktitle = {Distributed, Ambient and Pervasive Interactions. Smart Living, Learning, Well-Being and Health, Art and Creativity: 10th International Conference, DAPI 2022, Held as Part of the 24th HCI International Conference, HCII 2022, Virtual Event, June 26 – July 1, 2022, Proceedings, Part II},
pages = {336–351},
publisher = {Springer-Verlag},
address = {Berlin, Heidelberg},
abstract = {Under the circumstance of the rapid spread of the COVID-19 pandemic, enhancing human’s awareness of self-protection is one practical method to slow down the epidemic. In this study, we utilize mobile sensing to track human activity and guide human’s epidemic prevention behavior by gamified feedback techniques by our developed application. Virtually, human’s self-protection awareness is affected by many factors and the measures to enhance people’s self-protection behavior against the epidemic COVID-19 has always been an unresolved issue. In order to search for factors that influence human’s self-protection behavior, we analyzed the relationships between various human activities and the percentage complete of human’s self-protection behavior and we have extracted some more general conclusions from the results. Based on our data analysis results, we also made some proposals to enhance self-protection behavior. Meanwhile, our study illustrates the effectiveness of the method that analyzes human self-protection behavior through mobile sensing. Our study also validates the effectiveness of persuasive technology on human’s self-protection behavior against the COVID-19 pandemic and therefore we advocate enhancing human’s self-protection awareness through external intervention and guidance by smart device.},
keywords = {COVID-19, Infection prevention, Mobile sensing, Persuasive technology., Self-protection behavior, Self-Tracking},
pubstate = {published},
tppubtype = {inproceedings}
}
Xuefu Dong, Zengyi Han, Yuuki Nishiyama, Kaoru Sezaki
DoubleCheck: Detecting Single-Hand Cycling with Inertial Measurement Unit of Smartphone Inproceedings
In: IEEE International Conference on Pervasive Computing and Communications (PerCom), IEEE, Pisa, Italy, 2022, ISBN: 978-1-6654-1648-1.
Abstract | BibTeX | Tags: | Links:
@inproceedings{percom2022_dong,
title = {DoubleCheck: Detecting Single-Hand Cycling with Inertial Measurement Unit of Smartphone},
author = {Xuefu Dong and Zengyi Han and Yuuki Nishiyama and Kaoru Sezaki},
doi = {10.1109/PerComWorkshops53856.2022.9767429},
isbn = {978-1-6654-1648-1},
year = {2022},
date = {2022-03-21},
urldate = {2022-03-21},
booktitle = {IEEE International Conference on Pervasive Computing and Communications (PerCom)},
publisher = {IEEE},
address = {Pisa, Italy},
abstract = {Riding bikes with only one hand on the handlebar can severely undermine the steering capability of riders and risk road safety. In this study, we propose a first detection framework for monitoring single-hand cycling on bicycle travel, called DoubleCheck. It is based on the premise that riders adapt their body movement during single-hand cycling, which is distinguishable to the sensors even amid noise from the exasperate road surface. The system can detect handlebar-holding under different road conditions using motion signals from a built-in inertial measurement unit (IMU) in a handlebar-mounted smartphone. We implemented the system and invited 10 participants for our evaluation experiment. Our results show that DoubleCheck achieved an F1-score of 0.94 for hand detection, proving its efficacy for real-life implementation to improve road safety.},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
Shota Ono, Yuuki Nishiyama, Kaoru Sezaki
Detecting Face-Mask Wearing Status Using Motion Sensors in Commercially Available Smartwatches Inproceedings
In: 2022 IEEE International Conference on E-health Networking, Application & Services (HealthCom), pp. 107-112, 2022.
BibTeX | Tags: | Links:
@inproceedings{9982766,
title = {Detecting Face-Mask Wearing Status Using Motion Sensors in Commercially Available Smartwatches},
author = {Shota Ono and Yuuki Nishiyama and Kaoru Sezaki},
doi = {10.1109/HealthCom54947.2022.9982766},
year = {2022},
date = {2022-01-01},
booktitle = {2022 IEEE International Conference on E-health Networking, Application & Services (HealthCom)},
pages = {107-112},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
西山勇毅, 柿野優衣, 中縁嗣, 野田悠加, 羽柴彩月, 山田佑亮, 佐々木航, 大越匡, 中澤仁, 森将輝, 水鳥寿思, 塩田琴美, 永野智久, 東海林祐子, 加藤貴昭
感染症流行時におけるスマートフォンを用いた 大学生の身体活動量分析 Journal Article
In: 情報処理学会論文誌 [特集:ユビキタスコンピューティングシステム(X)] , 62 (10), pp. 1630–1643, 2021.
Abstract | BibTeX | Tags: COVID-19, モバイルセンシング, 歩数, 行動認識, 身体活動量分析 | Links:
@article{nishiyama2021_sfcgo_ipsj,
title = {感染症流行時におけるスマートフォンを用いた 大学生の身体活動量分析},
author = {西山勇毅 and 柿野優衣 and 中縁嗣 and 野田悠加 and 羽柴彩月 and 山田佑亮 and 佐々木航 and 大越匡 and 中澤仁 and 森将輝 and 水鳥寿思 and 塩田琴美 and 永野智久 and 東海林祐子 and 加藤貴昭},
url = {http://id.nii.ac.jp/1001/00213189/},
doi = {10.20729/00213189},
year = {2021},
date = {2021-10-01},
journal = {情報処理学会論文誌 [特集:ユビキタスコンピューティングシステム(X)] },
volume = {62},
number = {10},
pages = {1630--1643},
abstract = { 新型コロナウイルス感染症(COVID-19)の世界的な感染拡大にともない,多くの大学ではキャンパス内での感染予防のために,キャンパスの封鎖とインターネット越しに授業を配信するオンライン授業が導入され,学生たちは自宅から授業に参加している.このような在宅中心の新しい生活様式は,感染予防効果が見込める一方で,運動不足による二次的な健康被害が懸念される.新しい生活様式における大学生の身体活動の実態,特に学生の属性や時間帯ごとの身体活動量とその内容を明らかにすることは,二次的な健康被害を予防するうえで必要不可欠である.そこで本研究では,日常生活中の身体活動データ(歩数と6種類の行動種別)を大学生が所有するスマートフォンを用いて自動収集し,大学生の身体活動量を明らかにする.身体活動データは,必修の体育授業を履修する大学1年生305名から10週間収集した.その結果,通学(7時から10時)や教室での授業,課外活動(11時から24時)の時間帯における歩数の減少と静止時間の長時間化が明らかになった.本結果は,新しい生活様式における大学生活が平日の身体活動量の低下を招く可能性を示唆する.
With the spreading of the new coronavirus infection (COVID-19) worldwide, several universities have closed their campuses to prevent the spread of infection. Consequently, university classes are being held over the Internet, and students attend these classes from their homes. While the COVID-19 pandemic is expected to be prolonged, the online-centric lifestyle has raised concerns about secondary health issues caused by reduced physical activity (PA). However, the actual status of PA among college students has not yet been examined in Japan. Hence, in this study, we collected daily PA data (including the data corresponding to the number of steps taken and the data associated with six types of activities) by employing off-the-shelf smartphones and thereby analyzing the PA changes of college students. The PA data were collected over a period of ten weeks from 305 first-year college students who were attending a mandatory class of physical education at the university. The obtained results indicate that the decrease in commuting time (7 AM to 10 AM), classroom time, and extracurricular activity time (11 AM to 12 AM) has led to a decrease in PA on weekdays owing to reduced unplanned exercise opportunities. The results suggest that college life in an online-centric lifestyle may lead to a decrease in PA on weekdays.},
keywords = {COVID-19, モバイルセンシング, 歩数, 行動認識, 身体活動量分析},
pubstate = {published},
tppubtype = {article}
}
西山勇毅, 川原圭博, 瀬崎薫
MOCHA: Bluetoothビーコンを用いた学内位置情報サービスの開発・運用 Journal Article Open Access
In: 画像電子学会誌, 50 (3), pp. 459-461, 2021, (ウィズコロナ・アフターコロナに向けた安心・安全・便利なキャンパスを目指して).
Abstract | BibTeX | Tags: Bluetoothビーコン, COVID-19, アフターコロナ, ウィズコロナ, 位置情報サービス, 学内システム, 開発・運用 | Links:
@article{iieej2021_mocha,
title = {MOCHA: Bluetoothビーコンを用いた学内位置情報サービスの開発・運用},
author = {西山勇毅 and 川原圭博 and 瀬崎薫},
url = {https://www.iieej.org/journal-of-the-society/},
year = {2021},
date = {2021-08-01},
journal = {画像電子学会誌},
volume = {50},
number = {3},
pages = {459-461},
publisher = {画像電子学会},
abstract = {新型コロナウイルス感染症(COVID-19)の世界的な感染拡大により,感染症予防策の一つとして多くの大学では,オンライン授業や対面とオンライン授業を併用するハイブリッド授業を用いて教育・研究機会を提供してきた.2021年に入ってからは,多くの大学では,完全オンライン授業からハイブリッド・対面授業に移行しつつある.しかし,COVID-19 は常に変異しており,感染症の再流行も懸念されている.本格的な対面授業や研究活動の再開に向けて,学内管理施設における安心・安全の確保のためには,施設内における人々の滞在状況や人流・接触状況などを把握できることが望ましい.また,これらの情報は,アフターコロナにおいても,部屋の予約や道案内,場所に応じたリマインド機能などの DX 基盤としても活用できる.一方で,位置情報利用におけるプライバシーの確保やインセンティブ設計,開発・運用体制など実現には,技術以外にも多くの課題が存在する.},
note = {ウィズコロナ・アフターコロナに向けた安心・安全・便利なキャンパスを目指して},
keywords = {Bluetoothビーコン, COVID-19, アフターコロナ, ウィズコロナ, 位置情報サービス, 学内システム, 開発・運用},
pubstate = {published},
tppubtype = {article}
}
Wataru Sasaki, Yuuki Nishiyama, Tadashi Okoshi, Jin Nakazawa
Investigating the occurrence of selfie-based emotional contagion over social network Journal Article Open Access
In: Social Network Analysis and Mining, 11 , pp. 8, 2021, ISSN: 1869-5450.
Abstract | BibTeX | Tags: Emotional contagion ·, Mobile sensing ·, Social content sharing, Social network · | Links:
@article{Sasaki2021,
title = {Investigating the occurrence of selfie-based emotional contagion over social network},
author = {Wataru Sasaki and Yuuki Nishiyama and Tadashi Okoshi and Jin Nakazawa},
url = {http://link.springer.com/10.1007/s13278-020-00712-0},
doi = {10.1007/s13278-020-00712-0},
issn = {1869-5450},
year = {2021},
date = {2021-01-01},
journal = {Social Network Analysis and Mining},
volume = {11},
pages = {8},
publisher = {Springer},
abstract = {Happiness is obviously one of the most fundamental essence that affects many aspects of our lives. Past research found that happiness of one person affects that of other people. What occurs under this propagation of emotion is called “emotional contagion,” a phenomenon wherein through perception, people experience the same emotion expressed by someone when communicating with them. Although online communication is increasing due to growth of mobile computing, emotional contagion on online communication is not well studied yet. Particularly, it is not yet clear if emotional contagion among people occurs through selfie photographs posted on the social network media. We implemented “SmileWave,” the social networking system for investigating selfie-based emotional contagion. The key feature of SmileWave is detecting “smile degree” in user’s posting selfies and in reactive facial expressions when the user is viewing the posted photographs from others. Our in-the-wild user studies with 38 participants for 2 weeks revealed the occurrence of selfie-based emotional contagion over the social network, based on the results that the users’ smile degree improved (15% on average) when the user looked at posted selfie photographs.
},
keywords = {Emotional contagion ·, Mobile sensing ·, Social content sharing, Social network ·},
pubstate = {published},
tppubtype = {article}
}
Sang Won Bae, Tammy Chung, Rahul Islam, Brian Suffoletto, Jiameng Du, Serim Jang, Yuuki Nishiyama, Raghu Mulukutla, Anind Dey
Mobile phone sensor-based detection of subjective cannabis intoxication in young adults: A feasibility study in real-world settings Journal Article
In: Drug and Alcohol Dependence, pp. 108972, 2021, ISSN: 0376-8716.
Abstract | BibTeX | Tags: Acute intoxication, Cannabis smoking, Light gradient boosting machine model, Mobile phone sensors | Links:
@article{BAE2021108972,
title = {Mobile phone sensor-based detection of subjective cannabis intoxication in young adults: A feasibility study in real-world settings},
author = {Sang Won Bae and Tammy Chung and Rahul Islam and Brian Suffoletto and Jiameng Du and Serim Jang and Yuuki Nishiyama and Raghu Mulukutla and Anind Dey},
url = {https://www.sciencedirect.com/science/article/pii/S0376871621004671
https://doi.org/10.1016/j.drugalcdep.2021.108972},
doi = {https://doi.org/10.1016/j.drugalcdep.2021.108972},
issn = {0376-8716},
year = {2021},
date = {2021-01-01},
journal = {Drug and Alcohol Dependence},
pages = {108972},
abstract = {Background
Given possible impairment in psychomotor functioning related to acute cannabis intoxication, we explored whether smartphone-based sensors (e.g., accelerometer) can detect self-reported episodes of acute cannabis intoxication (subjective “high” state) in the natural environment.
Methods Young adults (ages 18–25) in Pittsburgh, PA, who reported cannabis use at least twice per week, completed up to 30 days of daily data collection: phone surveys (3 times/day), self-initiated reports of cannabis use (start/stop time, subjective cannabis intoxication rating: 0–10, 10 = very high), and continuous phone sensor data. We tested multiple models with Light Gradient Boosting Machine (LGBM) in distinguishing “not intoxicated” (rating = 0) vs subjective cannabis “low-intoxication” (rating = 1–3) vs “moderate-intensive intoxication” (rating = 4–10). We tested the importance of time features (i.e., day of the week, time of day) relative to smartphone sensor data only on model performance, since time features alone might predict “routines” in cannabis intoxication.
Results Young adults (N = 57; 58 % female) reported 451 cannabis use episodes, mean subjective intoxication rating = 3.77 (SD = 2.64). LGBM, the best performing classifier, had 60 % accuracy using time features to detect subjective “high” (Area Under the Curve [AUC] = 0.82). Combining smartphone sensor data with time features improved model performance: 90 % accuracy (AUC = 0.98). Important smartphone features to detect subjective cannabis intoxication included travel (GPS) and movement (accelerometer).
Conclusions
This proof-of-concept study indicates the feasibility of using phone sensors to detect subjective cannabis intoxication in the natural environment, with potential implications for triggering just-in-time interventions.},
keywords = {Acute intoxication, Cannabis smoking, Light gradient boosting machine model, Mobile phone sensors},
pubstate = {published},
tppubtype = {article}
}
西山勇毅, 瀬崎薫
イヤラブルデバイスを用いた身体感覚記録・利活用システムの構築に向けて Conference Award
第72回情報処理学会ユビキタスコンピューティングシステム(UBI)研究発表会, 2021-UBI-72 (12), 情報処理学会, 淡路島, 2021, ISSN: 2188-8698.
Abstract | BibTeX | Tags: アスリート, ウェアラブルデバイス, 言語化支援, 身体感覚, 音声認識 | Links:
@conference{nishiyama_ubi72,
title = {イヤラブルデバイスを用いた身体感覚記録・利活用システムの構築に向けて},
author = {西山勇毅 and 瀬崎薫},
url = {http://id.nii.ac.jp/1001/00213861/},
issn = {2188-8698},
year = {2021},
date = {2021-11-01},
urldate = {2021-11-01},
booktitle = {第72回情報処理学会ユビキタスコンピューティングシステム(UBI)研究発表会},
volume = {2021-UBI-72},
number = {12},
pages = {1--8},
publisher = {情報処理学会},
address = {淡路島},
abstract = {スポーツや楽器の演奏,自動車の運転など,効率的に新しい運動スキルを習得し,さらに向上させることは,人々の生活をより豊かにする.運動学習は,主観的な運動感覚と実際の動作とのズレを反復練習により埋める作業であるが,客観的な運動情報に比べ,主観的な情報を低負荷に記録し,それらを活用する環境は整っていない.そこで本研究では,運動学習時における主観的な運動情報を容易に収集・利活用可能なシステムを設計・実装し,評価した.},
keywords = {アスリート, ウェアラブルデバイス, 言語化支援, 身体感覚, 音声認識},
pubstate = {published},
tppubtype = {conference}
}
小野翔多, 山崎託, 三好匠, 西山勇毅, 瀬崎薫
移動体通信併用形MANETにおける経路要求送信回数に基づく経路構築手法 Conference
2021 電子情報通信学会ソサイエティ大会, オンライン, 2021.
BibTeX | Tags: MANET, モバイルネットワーク, 位置情情報, 負荷分散
@conference{,
title = {移動体通信併用形MANETにおける経路要求送信回数に基づく経路構築手法},
author = {小野翔多 and 山崎託 and 三好匠 and 西山勇毅 and 瀬崎薫},
year = {2021},
date = {2021-09-14},
urldate = {2021-09-14},
booktitle = {2021 電子情報通信学会ソサイエティ大会},
address = {オンライン},
keywords = {MANET, モバイルネットワーク, 位置情情報, 負荷分散},
pubstate = {published},
tppubtype = {conference}
}
笠原有貴, 西山勇毅, 瀬崎薫
スマートウォッチを用いた子育て行動の推定に向けた一検討 Conference
計測自動制御学会 計測部門スマートセンシングシステム部会, 計測自動制御学会, 2021.
BibTeX | Tags: childcare, Context-Aware, sensing, Wearable | Links:
@conference{sss_kasahara,
title = {スマートウォッチを用いた子育て行動の推定に向けた一検討},
author = {笠原有貴 and 西山勇毅 and 瀬崎薫},
url = {http://rcl.it.aoyama.ac.jp/member/sice-sss/20210913_program.html},
year = {2021},
date = {2021-09-13},
urldate = {2021-09-13},
booktitle = {計測自動制御学会 計測部門スマートセンシングシステム部会},
publisher = {計測自動制御学会},
keywords = {childcare, Context-Aware, sensing, Wearable},
pubstate = {published},
tppubtype = {conference}
}
下条和暉, ⻄山勇毅, 瀬崎薫
常時装着型イアラブルデバイスにおける割り込み可能タイミングの検討 Conference
CSIS DAYS 2021, 東京大学空間情報科学研究センター, 2021.
BibTeX | Tags: UX, イヤラブル, タイミング, 割り込み
@conference{csis2021_shimojo,
title = {常時装着型イアラブルデバイスにおける割り込み可能タイミングの検討},
author = {下条和暉 and ⻄山勇毅 and 瀬崎薫},
year = {2021},
date = {2021-09-10},
urldate = {2021-09-10},
booktitle = {CSIS DAYS 2021},
pages = {xx--xx},
publisher = {東京大学空間情報科学研究センター},
keywords = {UX, イヤラブル, タイミング, 割り込み},
pubstate = {published},
tppubtype = {conference}
}
小池優太郎, 西山勇毅, 瀬崎薫
集約型都市におけるライドシェアサービス導入効果のシミュレーション Conference
CSIS DAYS 2021, 東京大学空間情報科学研究センター, 2021.
BibTeX | Tags: MaaS, コンパクトシティー, シュミレーション, ライドシェア
@conference{csis2021_koike,
title = {集約型都市におけるライドシェアサービス導入効果のシミュレーション},
author = {小池優太郎 and 西山勇毅 and 瀬崎薫},
year = {2021},
date = {2021-09-10},
urldate = {2021-09-10},
booktitle = {CSIS DAYS 2021},
pages = {xx--xx},
publisher = {東京大学空間情報科学研究センター},
keywords = {MaaS, コンパクトシティー, シュミレーション, ライドシェア},
pubstate = {published},
tppubtype = {conference}
}
鈴木凌斗, 村上弘晃, 西山勇毅, 川原圭博, 瀬崎薫
部屋毎の滞在時間特性を考慮した頑健な滞在場所推定手法 Conference
研究報告ユビキタスコンピューティングシステム(UBI), 2021-UBI-71 , 情報処理学会, 2021.
Abstract | BibTeX | Tags: Bluetoothビーコン, COVID-19, ワイブル分布, 滞在場所推定 | Links:
@conference{ubi71_suzuki,
title = {部屋毎の滞在時間特性を考慮した頑健な滞在場所推定手法},
author = {鈴木凌斗 and 村上弘晃 and 西山勇毅 and 川原圭博 and 瀬崎薫},
url = {http://id.nii.ac.jp/1001/00212361/},
year = {2021},
date = {2021-09-01},
urldate = {2021-09-01},
booktitle = {研究報告ユビキタスコンピューティングシステム(UBI)},
volume = {2021-UBI-71},
pages = {1--7},
publisher = {情報処理学会},
abstract = {屋内での滞在情報を正確に把握することで,混雑度の推定や集客情報,人流の把握など,様々なサービスを提供できる.BluetoothビーコンやWiFiの信号強度を用いた滞在場所推定手法では,低コストに滞在推定システムを導入できる.しかしながら,受信信号強度の不安定さや隣接した部屋から漏れる信号などが原因となり,単純な信号強度のみを用いた判定では,受信環境によっては滞在場所の誤判定が頻繁に発生する.本稿では,部屋ごとの滞在時間特性の違いを考慮に入れることにより誤判定を抑制する手法を提案する.提案手法では,部屋ごとの滞在時間の分布をワイブル分布にフィッティングし,生存時間解析を適用することによりユーザの状態を推定する.信号強度の強弱のみに基づく既存手法との比較のため,正解ラベル付きのデータを収集し評価実験を行った.},
keywords = {Bluetoothビーコン, COVID-19, ワイブル分布, 滞在場所推定},
pubstate = {published},
tppubtype = {conference}
}
陳美怡, 幡井皓介, 西山勇毅, 瀬崎薫
感染症予防行動を促進させるインセンティブモデルに関する一検討 Conference
研究報告ユビキタスコンピューティングシステム(UBI), 2021-UBI-71 (3), 情報処理学会, 2021, ISSN: 2188-8698.
Abstract | BibTeX | Tags: COVID-19, ゲーミフィケーション, モバイル・ウェアラブルセンシング, 感染症予防, 行動変容促進 | Links:
@conference{ubi71_chen,
title = {感染症予防行動を促進させるインセンティブモデルに関する一検討},
author = {陳美怡 and 幡井皓介 and 西山勇毅 and 瀬崎薫},
url = {http://id.nii.ac.jp/1001/00212342/},
issn = {2188-8698},
year = {2021},
date = {2021-08-26},
urldate = {2021-08-26},
booktitle = {研究報告ユビキタスコンピューティングシステム(UBI)},
volume = {2021-UBI-71},
number = {3},
pages = {1--7},
publisher = {情報処理学会},
abstract = {現在,新型コロナウイルス感染症(COVID-19)の感染が拡大しており,人々の生命と健康を大きく脅かしている.政府は地方自治体,保健機関は,「手洗い」や「マスクの着用」 「行動記録」「外出自粛」などの感染症予防策を人々に積極的に取り続けることを推奨している.本研究では,ユーザの感染症予防行動の促進を日標とし,既存の行動記録アプリ(SelfGuard)を拡張し,感染症予防行動に対する最適なインセンティブモデルの導入を検討する.具体的には,スマートフォンとウェアラブルデバイスに搭載されたセンサを利用してユーザの感染症予防行動を認識し,行動に応じてインセンティブとして換金可能なポイントを付与する.固定・加算・減算モデルという三種類のインセンティブモデルにおいて人の行動に与える影響の違いを調査する.},
keywords = {COVID-19, ゲーミフィケーション, モバイル・ウェアラブルセンシング, 感染症予防, 行動変容促進},
pubstate = {published},
tppubtype = {conference}
}
陳美怡, 幡井皓介, 西山勇毅, 瀬崎薫
感染症予防行動を促進させるインセンティブモデルの構築に向けて Conference
第20回情報科学技術フォーラム(FIT2021), 情報処理学会, オンライン, 2021.
Abstract | BibTeX | Tags: COVID-19, セルフトラッキング, 位置情報, 感染症予防, 行動変容促進 | Links:
@conference{fit2021_selfguard,
title = {感染症予防行動を促進させるインセンティブモデルの構築に向けて},
author = {陳美怡 and 幡井皓介 and 西山勇毅 and 瀬崎薫},
url = {https://www.ipsj.or.jp/event/fit/fit2021/},
year = {2021},
date = {2021-08-25},
urldate = {2021-08-25},
booktitle = {第20回情報科学技術フォーラム(FIT2021)},
publisher = {情報処理学会},
address = {オンライン},
abstract = {現在、新型コロナウイルス感染症(COVID-19)の感染が拡大しており,人々の生命と健康を大きく脅かしている.2021年4月18日時点で,COVID-19による全世界の累計死亡者数が300万人を超えたことが報告された[1].市や政府は,感染症の感染拡大を防ぐために,自己隔離,ロックダウン,行動制限などの対策を実施している.また政府や保健機関は,人々が手洗い・マスクの着用・行動記録・外出自粛などの感染症予防策を積極的に取り続けることを推奨している.西山らの研究では,行動記録アプリ(SelfGuard)を開発し,半自動的にユーザの滞在情報・行動履歴を記録することで,感染症予防行動の促進を実現している[2].本研究では,ユーザの感染症予防行動の促進を目標として,既存アプリ(SelfGuard)を拡張し,感染症予防行動に対する最適なインセンティブモデルの導入を検討する.具体的には,スマートフォンとウェアラブルデバイスに搭載されたセンサを利用してユーザの感染症予防行動を認識し,行動に応じてインセンティブとして換金可能なポイントを付与する.定額・加算・減算モデルという三種類のインセンティブモデルにおいて人の行動に与える影響の違いを評価する},
keywords = {COVID-19, セルフトラッキング, 位置情報, 感染症予防, 行動変容促進},
pubstate = {published},
tppubtype = {conference}
}
木口裕太, 杉山健, 小野翔多, 山崎託, 三好匠, シルバーストン トーマス
位置情報に基づく歩車間危険通知システムにおける負荷削減手法 Conference
第26回電子情報通信学会東京支部学生会研究発表会, (52), オンライン, 2021.
BibTeX | Tags:
@conference{,
title = {位置情報に基づく歩車間危険通知システムにおける負荷削減手法},
author = {木口裕太 and 杉山健 and 小野翔多 and 山崎託 and 三好匠 and シルバーストン トーマス},
year = {2021},
date = {2021-03-06},
urldate = {2021-03-06},
booktitle = {第26回電子情報通信学会東京支部学生会研究発表会},
number = {52},
address = {オンライン},
keywords = {},
pubstate = {published},
tppubtype = {conference}
}
立岡俊, 山本嶺, 山崎託, 三好匠, 片田寛志, 小野翔多, 田中良明
車両の移動特性に基づくセルラ通信併用形V2V情報共有手法 Conference
第26回電子情報通信学会東京支部学生会研究発表会, (53), オンライン, 2021.
BibTeX | Tags:
@conference{,
title = {車両の移動特性に基づくセルラ通信併用形V2V情報共有手法},
author = {立岡俊 and 山本嶺 and 山崎託 and 三好匠 and 片田寛志 and 小野翔多 and 田中良明},
year = {2021},
date = {2021-03-06},
urldate = {2021-03-06},
booktitle = {第26回電子情報通信学会東京支部学生会研究発表会},
number = {53},
address = {オンライン},
keywords = {},
pubstate = {published},
tppubtype = {conference}
}
Helinyi Peng, Yuuki Nishiyama, Kaoru Sezaki
Estimation of Greenhouse Gas Emission Reduction from Shared Micromobility System Inproceedings
In: 2021 IEEE Green Energy and Smart Systems Conference (IGESSC), pp. 1-6, IEEE, Long Beach, CA, USA, 2021, ISSN: 2640-0138.
Abstract | BibTeX | Tags: environmental impacts, greenhouse gas emission, Machine learning, shared micromobility | Links:
@inproceedings{igessc2021_peng,
title = {Estimation of Greenhouse Gas Emission Reduction from Shared Micromobility System},
author = {Helinyi Peng and Yuuki Nishiyama and Kaoru Sezaki},
url = {https://ieeexplore.ieee.org/document/9618701
https://www.youtube.com/watch?v=vbt622kXNuU},
doi = {10.1109/IGESSC53124.2021.9618701},
issn = {2640-0138},
year = {2021},
date = {2021-11-01},
urldate = {2021-11-01},
booktitle = {2021 IEEE Green Energy and Smart Systems Conference (IGESSC)},
pages = {1-6},
publisher = {IEEE},
address = {Long Beach, CA, USA},
abstract = {Shared micromobility is widely recognized as an environmentally friendly travel mode and a critical component of transportation decarbonization. However, quantitatively assessing its environmental impact using real-world trip data is an unresolved and challenging subject. In this research, we proposed a system combining machine learning algorithms and the Monte Carlo simulation to address this issue. First, several machine learning algorithms (Random Forest, XGBoost, and LightGBM) were utilized to identify citizens’ travel mode choice preferences and then estimate the substituted travel mode of each micromobility trip. Second, to ensure the reliability of the final environmental impact assessment, the Monte Carlo simulations were used to simulate the substituted mode of each trip. Then the environmental impacts were calculated based on the life cycle greenhouse gas emissions. Instead of estimating a specific number, we obtained a probabilistic outcome for environmental impacts by using the Monte Carlo simulation, which considers the uncertainty. According to the studies, the shared bike service and the shared e-scooter service have positive environmental impacts. However, these effects are limited compared to the transportation sector’s total emissions. The most compelling reason is that shared micromobility comprises a minuscule part of total urban travel.},
keywords = {environmental impacts, greenhouse gas emission, Machine learning, shared micromobility},
pubstate = {published},
tppubtype = {inproceedings}
}
Hong Duc Nguyen, Shunsuke Aoki, Yuuki Nishiyama, Kaoru Sezaki
A Run-time Dynamic Computation Offloading Strategy in Vehicular Edge Computing Inproceedings
In: 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), IEEE, Online, 2021.
Abstract | BibTeX | Tags: Connected vehicles, Edge computing, Off-loading, Vehicular networks | Links:
@inproceedings{duc_vtc2021,
title = {A Run-time Dynamic Computation Offloading Strategy in Vehicular Edge Computing},
author = {Hong Duc Nguyen and Shunsuke Aoki and Yuuki Nishiyama and Kaoru Sezaki},
url = {https://events.vtsociety.org/vtc2021-fall/
https://ieeexplore.ieee.org/document/9625245},
doi = {10.1109/VTC2021-Fall52928.2021.9625245},
year = {2021},
date = {2021-09-27},
urldate = {2021-09-27},
booktitle = {2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall)},
publisher = {IEEE},
address = {Online},
abstract = {In vehicular edge computing (VEC), offloading the tasks to the nearby resource-rich edge servers helps each vehicle enhance computational capabilities and improve in-vehicle applications' performance. However, the concentration of travel at specific spaces and times poses significant challenges on the load-balancing and scheduling of computation tasks at the edge servers. This paper studies a low-complexity dynamic online offloading strategy that efficiently reduces task delay and computing resource consumption in the multi-user, multiserver vehicular edge computing scenarios. Our design addresses issues of computation task placement and execution order of the tasks on each server. We use a realistic approach that vehicles generate tasks over time, and the set of the tasks is unknown in advance so that the offloading decisions are made in runtime. Extensive simulations are conducted on a real mobility trace of Luxembourg city, and the results show that the proposed algorithm effectively improves the offloading utility of the system.},
keywords = {Connected vehicles, Edge computing, Off-loading, Vehicular networks},
pubstate = {published},
tppubtype = {inproceedings}
}
Zengyi Han, Hong Duc Nguyen, Shunsuke Aoki, Yuuki Nishiyama, Kaoru Sezaki
MiMoSense: An Open Crowdsensing Platform for Micro-Mobility Inproceedings
In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), pp. 1-6, IEEE, 2021.
Abstract | BibTeX | Tags: e-scooter, Micro-Mobility, Mobile Sensing Toolkit | Links:
@inproceedings{ieee_itsc_mimosense,
title = {MiMoSense: An Open Crowdsensing Platform for Micro-Mobility},
author = {Zengyi Han and Hong Duc Nguyen and Shunsuke Aoki and Yuuki Nishiyama and Kaoru Sezaki},
url = {https://2021.ieee-itsc.org/},
doi = {10.1109/ITSC48978.2021.9564524},
year = {2021},
date = {2021-09-19},
booktitle = {2021 IEEE International Intelligent Transportation Systems Conference (ITSC)},
pages = {1-6},
publisher = {IEEE},
abstract = {The use of micro-mobility (e.g., bicycle and scooter) and their data for urban sensing and rider assessment is becoming increasingly popular in research. However, different research topics require different sensor setups; no general data collecting tools for the micro-mobility makes the researcher who wishes to collect data has to build their own collecting system from scratch. To this end, we present MiMoSense, an open crowdsensing platform for micro-mobility. MiMoSense consists of two components: (1) MiMoSense server, which is set up on the cloud, and used to manage sensing studies and the collected data for research and sharing. (2) MiMoSense client, uses micro-mobility carrying various sensors and IoT devices to collect multiple kinds of data during traveling. As a reusable open-source software, MiMoSense shifts the researcher's focus from software development to sensing data analysis; it can help researchers quickly develop an extensible platform for collecting micro-mobility's raw sensing data and inferring traveling context. We have evaluated MiMoSense's battery consumption, message latency and discuss its use.},
keywords = {e-scooter, Micro-Mobility, Mobile Sensing Toolkit},
pubstate = {published},
tppubtype = {inproceedings}
}
Hidenaga Ushijima, Shunsuke Aoki, Peng Helinyi, Yuuki Nishiyama, Kaoru Sezaki
An Unsupervised Learning-based Approach for User Mobility Analysis of E-Scooter Sharing Systems Inproceedings
In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), IEEE, 2021.
BibTeX | Tags: data analysis, e-scooter | Links:
@inproceedings{itsc2021_ntf,
title = {An Unsupervised Learning-based Approach for User Mobility Analysis of E-Scooter Sharing Systems},
author = {Hidenaga Ushijima and Shunsuke Aoki and Peng Helinyi and Yuuki Nishiyama and Kaoru Sezaki
},
url = {https://2021.ieee-itsc.org/},
doi = {10.1109/ITSC48978.2021.9564616},
year = {2021},
date = {2021-09-19},
booktitle = {2021 IEEE International Intelligent Transportation Systems Conference (ITSC)},
journal = {2021 IEEE International Conference on Intelligent Transportation - ITSC},
publisher = {IEEE},
keywords = {data analysis, e-scooter},
pubstate = {published},
tppubtype = {inproceedings}
}
Hong Duc Nguyen, Shunsuke Aoki, Yuuki Nishiyama, Kaoru Sezaki
An Online Task Offloading Strategy in Vehicular Edge Computing Inproceedings Award
In: IEICE Society Conference 2021 , IEICE, 2021.
BibTeX | Tags: Connected vehicles, Edge computing, Off-loading, Vehicular networks | Links:
@inproceedings{ieice2021_duc,
title = {An Online Task Offloading Strategy in Vehicular Edge Computing},
author = {Hong Duc Nguyen and Shunsuke Aoki and Yuuki Nishiyama and Kaoru Sezaki },
url = {http://www.ieice-taikai.jp/2021society/jpn/},
year = {2021},
date = {2021-09-14},
urldate = {2021-09-14},
booktitle = {IEICE Society Conference 2021 },
publisher = {IEICE},
keywords = {Connected vehicles, Edge computing, Off-loading, Vehicular networks},
pubstate = {published},
tppubtype = {inproceedings}
}
Soichiro Higuma, Kosuke Hatai, Yuuki Nishiyama, Kaoru Sezaki
Towards Estimating UV Exposure Using GPS Signal Strength from a Carrying Smartphone Inproceedings
In: 2021 IEEE International Conference on Smart Computing (SMARTCOMP), pp. 299-304, IEEE, Irvine, CA, USA, 2021, ISBN: 2693-8340.
Abstract | BibTeX | Tags: Estimation, GPS, Mobile sensing, UV | Links:
@inproceedings{edgedl2021-uv,
title = {Towards Estimating UV Exposure Using GPS Signal Strength from a Carrying Smartphone},
author = {Soichiro Higuma and Kosuke Hatai and Yuuki Nishiyama and Kaoru Sezaki},
doi = {10.1109/SMARTCOMP52413.2021.00063},
isbn = {2693-8340},
year = {2021},
date = {2021-08-23},
booktitle = {2021 IEEE International Conference on Smart Computing (SMARTCOMP)},
pages = {299-304},
publisher = {IEEE},
address = {Irvine, CA, USA},
abstract = {Owing to lifestyle changes, urbanization, and the COVID-19 pandemic, many people spend more time indoors and tend to receive less direct sunlight than before. Although excessive or inadequate ultraviolet (UV) exposure can be harmful to our physical and mental health, moderate UV exposure is essential for vitamin D (VD) production in the body. In this study, we estimate the UV exposure using an off-the-shelf smartphone, and explore the relationship between the UV values and GPS signal strength (C/N0). The results demonstrate that a strong correlation (R 2 = 0.73) between the UV values and carrier to noise density (C/N0) even if the smartphone and UV sensor are moved. Therefore, it is possible to estimate the UV exposure to some extent from a person's location, even while carrying a smartphone.},
keywords = {Estimation, GPS, Mobile sensing, UV},
pubstate = {published},
tppubtype = {inproceedings}
}