Sezaki & Nishiyama Laboratory
Institute of Industrial Science / Center for Spatial Information Science in The University of Tokyo
Institute of Industrial Science / Center for Spatial Information Science in The University of Tokyo
西山勇毅, 佐々木航, 栄元優作, 本木悠介, 大越匡, 中澤仁, 瀬崎薫
In-the-Wild実験におけるiOS用モバイルセンシングフレームワークの性能評価 Conference
電子情報通信学会技術研究報告: 信学技報, 119 (477), ライフインテリジェンスとオフィス情報システム(LOIS) 電子情報通信学会, 大濱信泉記念館(石垣島) , 2020, ISSN: 0913-5685.
Abstract | BibTeX | Tags: AWARE, In-the-Wildセンシング, iOS, ガイドライン, センシング基盤, フレームワーク, モバイルセンシング | Links:
@conference{Nishiyama2020_LOIS,
title = {In-the-Wild実験におけるiOS用モバイルセンシングフレームワークの性能評価},
author = {西山勇毅 and 佐々木航 and 栄元優作 and 本木悠介 and 大越匡 and 中澤仁 and 瀬崎薫},
url = {https://www.ieice.org/ken/index/ieice-techrep-119-477.html},
issn = {0913-5685},
year = {2020},
date = {2020-03-11},
urldate = {2020-03-11},
booktitle = {電子情報通信学会技術研究報告: 信学技報},
volume = {119},
number = {477},
pages = {127-132},
publisher = {電子情報通信学会},
address = {大濱信泉記念館(石垣島) },
organization = {ライフインテリジェンスとオフィス情報システム(LOIS)},
abstract = {ユーザの携帯端末より収集したセンサデータを用いて,人や集団・空間の状態を理解するモバイルセンシングは,情報科学だけでなく社会科学や公衆衛生など様々な分野で利用されている.モバイルセンシングを容易に実現するツールは多数提案されており,それらは研究室内実験など「コントール環境」での性能評価は行われている.しかし,実際の被験者にシステムを配布し実験を行う「In-the-Wild環境」における性能評価は行われていない.特にAndroidに比べiOSは制約が多く,制約を無視した設定はデータ収集率の低下を招くため,適切な設定を明らかにする必要がある.
そこで本研究では,iOS用モバイルセンシングフレームワーク({it AWARE-iOS})を用いて,1週間のIn-the-Wild環境実験を10人の被験者を対象に行い,その際の{it AWARE-iOS}のデータ収集性能及びバッテリ消費を評価した.その結果,最も収集率が高い可能性のある設定(ESM+SPN)では,ユーザが{it AWARE-iOS}を強制終了しない限り95%以上のデータを収集可能であり,平均11.39時間の起動が可能であることが明らかになった. },
keywords = {AWARE, In-the-Wildセンシング, iOS, ガイドライン, センシング基盤, フレームワーク, モバイルセンシング},
pubstate = {published},
tppubtype = {conference}
}
Yuuki Nishiyama, Denzil Ferreira, Wataru Sasaki, Tadashi Okoshi, Jin Nakazawa, Anind K Dey, Kaoru Sezaki
Using IOS for Inconspicuous Data Collection: A Real-World Assessment Inproceedings
In: Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers, pp. 261–266, Association for Computing Machinery, Virtual Event, Mexico, 2020, ISBN: 9781450380768.
Abstract | BibTeX | Tags: Effective Data Collection, iOS, Mobile Crowd sensing, Mobile Sensing Toolkit, Real-world Assessment | Links:
@inproceedings{10.1145/3410530.3414369,
title = {Using IOS for Inconspicuous Data Collection: A Real-World Assessment},
author = {Yuuki Nishiyama and Denzil Ferreira and Wataru Sasaki and Tadashi Okoshi and Jin Nakazawa and Anind K Dey and Kaoru Sezaki},
url = {https://doi.org/10.1145/3410530.3414369
https://github.com/tetujin/AWAREFramework-iOS},
doi = {10.1145/3410530.3414369},
isbn = {9781450380768},
year = {2020},
date = {2020-09-12},
booktitle = {Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers},
pages = {261–266},
publisher = {Association for Computing Machinery},
address = {Virtual Event, Mexico},
series = {UbiComp-ISWC '20},
abstract = {Mobile Crowd Sensing (MCS) is a method for collecting multiple sensor data from distributed mobile devices for understanding social and behavioral phenomena. The method requires collecting the sensor data 24/7, ideally inconspicuously to minimize bias. Although several MCS tools for collecting the sensor data from an off-the-shelf smartphone are proposed and evaluated under controlled conditions as a benchmark, the performance in a practical sensing study condition is scarce, especially on iOS. In this paper, we assess the data collection quality of AWARE iOS, installed on off-the-shelf iOS smartphones with 9 participants for a week. Our analysis shows that more than 97% of sensor data, provided by hardware sensors (i.e., accelerometer, location, and pedometer sensor), is successfully collected in real-world conditions, unless a user explicitly quits our data collection application.},
keywords = {Effective Data Collection, iOS, Mobile Crowd sensing, Mobile Sensing Toolkit, Real-world Assessment},
pubstate = {published},
tppubtype = {inproceedings}
}
Yuuki Nishiyama, Denzil Ferreira, Yusaku Eigen, Wataru Sasaki, Tadashi Okoshi, Jin Nakazawa, Anind K Dey, Kaoru Sezaki
iOS Crowd-Sensing Won't Hurt a Bit!: AWARE Framework and Sustainable Study Guideline for iOS Platform Inproceedings Self Archive
In: Streitz, Norbert; Konomi, Shiníchi (Ed.): Distributed, Ambient and Pervasive Interactions, pp. 223–243, Springer International Publishing, Cham, 2020, ISBN: 978-3-030-50344-4.
Abstract | BibTeX | Tags: Data Collection Rate, Guideline, iOS, Mobile Sensing Framework, Sustainable Sensing | Links:
@inproceedings{10.1007/978-3-030-50344-4_17,
title = {iOS Crowd-Sensing Won't Hurt a Bit!: AWARE Framework and Sustainable Study Guideline for iOS Platform},
author = {Yuuki Nishiyama and Denzil Ferreira and Yusaku Eigen and Wataru Sasaki and Tadashi Okoshi and Jin Nakazawa and Anind K Dey and Kaoru Sezaki},
editor = {Norbert Streitz and Shiníchi Konomi},
url = {https://www.yuukinishiyama.com/2020/07/25/hcii2020/
https://www.yuukinishiyama.com/wp-content/uploads/2020/07/AWARE-iOS_HCII2020_preprint.pdf
https://github.com/tetujin/aware-client-ios-v2
https://github.com/tetujin/AWAREFramework-iOS},
doi = {10.1007/978-3-030-50344-4_17},
isbn = {978-3-030-50344-4},
year = {2020},
date = {2020-07-10},
booktitle = {Distributed, Ambient and Pervasive Interactions},
pages = {223--243},
publisher = {Springer International Publishing},
address = {Cham},
abstract = {The latest smartphones have advanced sensors that allow us to recognize human and environmental contexts. They operate primarily on Android and iOS, and can be used as sensing platforms for research in various fields owing to their ubiquity in society. Mobile sensing frameworks help to manage these sensors easily. However, Android and iOS are constructed following different policies, requiring developers and researchers to consider framework differences during research planning, application development, and data collection phases to ensure sustainable data collection. In particular, iOS imposes strict regulations on background data collection and application distribution. In this study, we design, implement, and evaluate a mobile sensing framework for iOS, namely AWARE-iOS, which is an iOS version of the AWARE Framework. Our performance evaluations and case studies measured over a duration of 288 h on four types of devices, show the risks of continuous data collection in the background and explore optimal practical sensor settings for improved data collection. Based on these results, we develop guidelines for sustainable data collection on iOS.},
keywords = {Data Collection Rate, Guideline, iOS, Mobile Sensing Framework, Sustainable Sensing},
pubstate = {published},
tppubtype = {inproceedings}
}